Journal of Organometallic Chemistry, 333 (1987) C18-C20 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

Photochemie von pentamethylcyclopentadienyl-substituierten Diphosphenen und Phosphaarsenen

P. Jutzi * und U. Meyer

Fakultät für Chemie, Universität Bielefeld, Universitätsstrasse, D-4800 Bielefeld (B.R.D.) (Eingegangen den 10. August 1987)

Abstract

Under irradiation dimerization of the diphosphenes $Cp^*P=PCp^*$ and $Cp^*P=PR$ (Cp^* = Pentamethylcyclopentadienyl, R = 2,4,6-Tri-t-butylphenyl) and the phosphaarsene $Cp^*As=PR$ takes place. Further irradiation leads to homolytic cleavage of Cp^* -element bonds. Intramolecular recombination leads to the bicyclic butterflycompounds P_4R_2 and $P_2As_2R_2$.

Der Pentamethylcyclopentadienyl-Ligand (Cp^{*}) ist durch die Kombination seiner Eigenschaften einzigartig in der Hauptgruppenchemie. Als π -Ligand ermöglicht er die Synthese neuartiger π -Komplexe, als σ -Ligand stabilisiert er kinetisch reaktive Bindungssysteme. Des weiteren bewirkt diese Gruppierung, π - oder σ -gebunden, eine Funktionalisierung der Verbindungen, denn Cp^{*}-Element-Bindungen können durch nukleophile, elektrophile und reduzierende wirkende Agentien gespalten werden [1]. Wir fanden jetzt, dass auch die Photolabilität von Cp^{*}-El-Bindungen für Synthesen im präparativen Massstab genutzt werden kann.

Kürzlich haben wir über die Darstellung von Cp^{*}-substituierten Diphosphenen (1, 2) und Phosphaarsenen (3) berichtet [2,3]. An diesen Systemen gelingt eine Substitution von Cp^{*}-Liganden unter Erhalt der jeweiligen Doppelbindung [2,3]. Bestrahlung dieser Verbindungen zeigt nun, dass in den zunächst durch (2 + 2) Cycloaddition gebildeten Vierringsystemen die jeweiligen Cp^{*}-Element-Bindungen (Element = As, P) homolytisch gespalten werden können [4 *]. Durch anschliessende intramolekulare Radikalkombination werden Phosphor-Phosphor- bzw. Arsen-Arsen-Bindungen geknüpft.

Zweistündige Belichtung von ca. 4×10^{-2} molaren Lösungen der Verbindungen 1, 2 und 3 in Hexan (Quecksilber-Hochdrucklampe Hanau TQ 150) bei Raumtemperatur führt nach ³¹P-NMR-spektroskopischer Reaktionskontrolle zu dem in Schema 1 aufgeführten Produktspektrum.

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Schema 1. Photoreaktionen von 1, 2 und 3. El = P: 2, 7, 9, 11, 13; El = As: 3, 8, 10, 12, 14; R = 2,4,6-Tri-t-butylphenyl; $Cp^* = 1,2,3,4,5$ -Pentamethylcyclopentadienyl.

Aus dem Bis(pentamethylcyclopentadienyl)diphosphen (1) entsteht zunächst das Cyclotetraphosphan 4 [5]. Weitere Bestrahlung von 4 führt unter zweifacher Cp^{*}-Radikal-Abspaltung zur Butterfly-Verbindung 5 [5], die wiederum durch Bestrahlung unter Verlust der restlichen Cp^{*}-Liganden zu P₄ abreagiert.

Komplexer ist der Reaktionsablauf im Fall des gemischt substituierten Diphosphens 2 und des Phosphaarsens 3. Im Reaktionsansatz sind sowohl die *exo-exo*-Butterfly-Verbindungen 9 bzw. 10 als auch die *endo-exo*-Isomere 11 bzw. 12 nachweisbar. Im Gegensatz zu 9 und 10 sind 11 und 12 thermisch nicht stabil [6 *]. Das Auftreten der Produkte 9–12 legt einen Reaktionsablauf über instabile, durch Kopf-Schwanz-Dimerisierung gebildete Cycloadditionsprodukte 7 bzw. 8 nahe.

	δ (ppm)	¹ <i>J</i> (PP) (Hz)	² J(PP) (Hz)	% a	
4	- 39.0	_		75	
5	- 147.5	192t	-	20	
	- 369.8	192t	-		
6	- 528.8	-	-	5	
9	-132.3	175t	-	79	
	- 274.8	175t	-		
11	- 57.0	229t	29.0d	14	
	- 98.8	209t	29.0d		
	-221.3	229/209dd			
15	493.8			7	
10	- 98.4	-	-	59	
12	- 29.3	-	25.1d	31	
	- 72.4	-	25.1d		
15	493.5	-	-	10	

³¹P-NMR-Daten der Reaktionsprodukte ^a

Tabelle 1

^a Nach zweistündiger Bestrahlung in THF (4-6) bzw. Hexan (9-15); t = Triplett, d = Dublett, dd = Doppeldublett.

Nach Bestrahlung der Doppelbindungssysteme 2 bzw. 3 kann auch das symmetrische Diphosphen 15 nachgewiesen werden; 15 kann durch Spaltung der durch Kopf-Kopf-Dimerisierung gebildeten Cyclen 13 und 14 entstehen [7 *].

Aus den Reaktionsgemischen konnten wir bisher nur das 2,4-Bis(2,4,6-tri-tbutylphenyl)-bicyclo[2.2.0]-1,3-diarsa-2,4-diphosphabutan (10) in Reinsubstanz isolieren [8 *]. Alle in Tabelle 1 beschriebenen Verbindungen sind eindeutig durch ihre ³¹P-NMR-Parameter charakterisiert. Das ³¹P-NMR-Spektrum des symmetrischen Bicyclus 9 weist zwei Tripletts (¹J(PP) 175 Hz) auf, wobei das Hochfeldsignal den Brückenkopfatomen zuzuordnen ist; das Spektrum von 11 zeigt für die Brückenkopfatome ein Doppeldublett (¹J(PP) 229 Hz, ¹J(PP) 209 Hz) sowie jeweils ein Triplett von Dubletts (¹J(PP) 229 Hz bzw. 209 Hz, ²J(PP) 29.0 Hz) für die peripheren Phosphoratome. In den analogen Phosphor-Arsen-Bicyclen 10 und 12 sind die Phosphorresonanzen leicht tieffeldverschoben gegenüber 9 und 11. Im Fall der asymmetrischen Verbindung 12 beträgt die ²J(PP)-Kopplung 25.1 Hz. Die Butterfly-Verbindung 11 wird hier erstmals beschrieben, während das symmetrische Isomer 9 schon auf anderem Wege [9] dargestellt werden konnte.

Gemischte Phosphor-Arsen-Butterfly-Verbindungen vom Typ 10 und 12 waren im Gegensatz zu P_4R_2 -[5,9,10] oder As_4R_2 -Bicyclen [11] bisher unbekannt. Somit hat sich die gezielte photochemische Spaltung von Cp*-Element-Bindungen als Syntheseweg zu einer neuen Verbindungsklasse erwiesen.

Dank. Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft gefördert. U.M. dankt dem Fonds der Chemischen Industrie für ein Promotionsstipendium.

Literatur

- 1 P. Jutzi, Comments Inorg. Chem., 6 (1987) 123.
- 2 P. Jutzi, U. Meyer, B. Krebs und M. Dartmann, Angew. Chem., 98 (1986) 894.
- 3 P. Jutzi und U. Meyer, J. Organomet. Chem., 326 (1987) C6.
- 4 Erste Hinweise auf die Photolabilität von Cp*-Phosphorverbindungen lieferte die Bestrahlung von Cp*P(CN)₂. ESR-spektroskopisch ist das Cp*-Radikal nachweisbar. A.G. Davies und P. Jutzi, unveröffentlichte Ergebnisse.
- 5 P. Jutzi und T. Wippermann, J. Organomet. Chem., 287 (1985) C5.
- 6 11 und 12 sind 3 h nach Ende der Bestrahlung im ³¹P-NMR-Spektrum der Reaktionslösungen nicht mehr nachzuweisen.
- 7 13 ist ³¹P-NMR-spektroskopisch kurzzeitig nachweisbar, reagiert aber bei weiterer Bestrahlung zu 15 oder nach Rückreaktion zu Diphosphen 2 zu den Butterflyverbindungen 9 und 11.
- 8 10: ¹H-NMR (300 MHz, C₆D₆): 1.15 ppm (9H, p-^tBu), 1.73 (18H, o-^tBu), 7.51 (2H, breit, CH arom.). ¹³.C-{H}-NMR (75.4 MHz, C₆D₆): 31.2 ppm (CMe₃), 34.4 (CMe₃), 35.3 (CMe₃), 39.5 (CMe₃), 123.0 (CH arom.), 148.7 (C arom.), 155.9 (C arom.).
- 9 R. Riedel, H.-D. Hausen und E. Fluck, Angew. Chem., 97 (1985) 1050.
- 10 E. Niecke, R. Rüger und B. Krebs, Angew. Chem., 94 (1982) 553.
- 11 M. Baudler und S. Wietfeld-Haltenhoff, Angew. Chem., 96 (1984) 361.